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THE STRUCTURE OF CELLULOSE BY CONFORMATIONAL
ANALYSIS. PART 4. CRYSTALLINE CELLULOSE I

A.PIZZ] and N. J. EATON

National Timber Research Institute
Council for Scientific and Industrial Research
Pretoria 0001, Republic of South Africa

ABSTRACT

The Kolpack, Weih, and Blackwell antiparallel central chain model was
found to be the most energetically stable for the crystalline structure
of cellulose II. Computational results indicated that the two most
probable Sarko models are considerably less stable and less probable.
The conformations of the monomers terminating the crystalline zone
have been described. The predominance of van der Waals and H-bond
interactions in the crystalline zone have been confirmed, and the H-
bond values, locations, and distribution in the crystalline zone have
been accurately mapped. The cellulose 11 crystallite has been confirmed
to be considerably more stable than the cellulose I crystallite. Positions
of atomic groups from the ab initio conformational analysis are consis-
tent with the x-ray data for the Kolpack, Weih, and Blackwell model.

INTRODUCTION

Recently, ab initio conformational analysis calculations have been used to
study the crystalline and amorphous structure of cellulose I [1-3]. This ap-
proach is different from the classical one of x-ray diffractometry. Informa-
tion on a crystalline or amorphous structure can be gleaned by applying it.
The same approach was applied in this study to the structure of cellulose II
(Scheme 1).
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SCHEME 1. Cellulose IL

While considerable indirect evidence of the structure of cellulose II is avail-
able, direct evidence is available only from a few advanced x-ray diffraction
studies [4-6]. Considering the wide field of important commercial products,
such as paper, in which cellulose II is present, it is indeed amazing that so much
less “direct-evidence” studies than for cellulose I are available that are speci-
fically aimed at clarifying the crystalline structure of cellulose II. The study
presented in this article is then a contribution to the present knowledge of the
crystalline structure of cellulose II by using an experimental approach differ-
ent from the classical x-ray diffraction one.

This article deals with the total energy balance and the conformation of the
cellulose chain in the cellulose Il crystalline network by taking into account
inter- and intrachain van der Waals, H-bond, electrostatic, and torsional inter-
actions.

EXPERIMENTAL

Single methyl-g-cellotetraoside chains (4-glucose rings) were strained from
the helicoidal conformation of minimum total energy ($°, ¥°) (-49°, -130°)
(-58°, -171°) (-49°, -130°) optimized in the previous articles [1, 2] to the
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“two-fold” helix conformations which are required from the (@°, ¥°) energy
maps [1, 2] to obtain the minimum amount of energy for the rotation of both
the intra- and intermonomers B-glucosidic linkages. The “two-fold” helix con-
formation was then used to check the energy balance of the Kolpak, Weih,
and Blackwell [4] and of the two most probable Sarko [5, 6] antiparallel-
central-chain models based on x-ray diffraction evidence. The structures
were optimized according to the same procedure and the same van der Waals,
H-bond, electrostatic, and torsional functions used in the preceeding article
[3] to optimize the structure of crystalline cellulose 1.

Two different cases for each model were optimized, namely: 1) a crystal
composed of 20 glucose residues with each of the five chains comprising 4
glucoses each, and 2) a crystal composed of 11 glucose residues with each
corner chain composed of 2 glucose residues and the central antiparallel
chain composed of three glucose residues. The 20 chains crystals configura-
tion defines the real structure better as it takes into account interactions not
considered by previous studies of cellulose IT [4-6], while the 11-chains con-
figuration is directly comparable to what is obtained by previous x-ray studies
[4-6].

Also the contributions to the van der Waals energy of nonrotatable groups
have been calculated, which cannot be eliminated during minimization
of the total energy of the structure when shifting the position of the central
chain along the longitudinal axis (the crystallographic axis) of the crystal, be-
fore energy optimization. This has been found to be a good indication of the
central chain shift which corresponds to the optimized minimum of energy.

The following parameters were used:

Kolpack, Weih, Blackwell model [4]: Monoclinic unit cell¢ = 8.02 A, b =
8.95 A, ¢=10.36 A, y=116.6" A; corner chain rotation = 22.0°, central
chain rotation = 62.7°, central chain shift = 0.227 ¢

First Sarko model [5]: Monoclinic unit cella=7.96 A, b=9.094, c =
10.31 A y=117.3°, corner chain rotation = 31°, central chain rotation =
64°, central chain shift = -2.97 A.

Second Sarke model [6]: Monoclinic unit cella=7.92 &, b=9.084, ¢ =
10.34 A, v =117.3°, corner chain rotation = 25°, central chain rotation =
55°, central chain shift = -3.43 A.

We have used, simply for mathematical conveniency, the opposite sign of
that used by Sarko [5, 6] for the direction of the central chain shift (thus
-3.43 A in Sarko is #3.43 A in this article).
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RESULTS AND DISCUSSION

The calculations and energy minimizations were carried out for the Kolpak,
Weih, Blackwell [4] model and for the two most probable Sarko [5, 6] models.
The results in Table 1 indicate that, for the Kolpak, Weih, and Blackwell model,
the minimum energy of the structure is found at a 2.2-2.3 A shift of the central
antiparallel chain in respect of the corner chains. This can be seen from the
minimum (and lack of) nonrotatable repulsive van der Waals interactions at the
2.2 and 2.3 A shifts. This is in good accord with the relevant x-ray data and
their refinement [4]. The use of nonrotatable repulsive van der Waals interac-
tions is based on the conformational analysis requirement that the conforma-
tion of minimum total energy of a structure in the stability of which the van
der Waals interactions are preponderant will be the one at which such interac-
tions can be minimized. Nonrotatable van der Walls repulsive contributions
are the ones which cannot be eliminated by any conformational adjustment of
the molecular skeleton without creating even higher van der Waals nonrotatable,
noneliminable, repulsive contributions, In theory, they must then be absent
for a structure to be stable, hence the minimum at 2.2-2.3 A central chain
shift in Table 1. In cases in which they cannot be eliminated, the principal and
first requirement is that the structure of minimum total energy will exist in the
conformation at which such repulsive noneliminable contributions are at their
minimum. Second, in such cases the conformation of minimum total energy is
likely to be the structure in which the maximum possible optimized H-bond
contribution is greater than the van der Waals repulsive nonrotatable interac-
tions.

As the cellulose I crystallite of similar dimensions has a total minimum en-
ergy of -46 kcal/mol [3] and the cellulose II crystallites are well known to be
in a considerably more stable energy situation [4-6], this means that for a
maximum allowable interchain H-bond contribution of approximately -60
kcal/mol and an electrostatic contribution of approximately -9 kcal/mol, any
nonrotatable van der Waals contribution must be at least much lower than +24
kcal/mol. In Table 2, this means that the Sarko conformation appears to be
stable and only marginally more stable than cellulose I for a shift of the cen-
tral antiparallel chain in a very different range than what is proposed in all the
best Sarko models [5, 6]. In Table 1 the same argument limits the shift of the
central chain to 1.8 to 2.5 A; coupled with the first requirement above and
with the x-ray data of Kolpack, Weih, and Blackwell [4], the minimum is in
the approximate range 2.2-2.3 A.

The energy calculations for the two Sarko [S, 6] models indicated that
the minimum energy of both structures is in the 1.7 to 2.4 A shift of the anti-
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parallel central chain. Table 2 indicates that the calculated minimum energy
as a function of central chain shift for the most favorable of the two Sarko
models (31°; 64°;-2.57 A) is at a 1.9-2.1 A shift. This is shown by the min-
imum of nonrotatable repulsive van der Waals interaction at 2.0 A shift. These
calculated data are not in accord with the chain shifts obtained by Sarko by
refining x-ray data [5, 6], which are of 2.97 and 3.43 A for the two models.
The minimum values of the nonrotatable repulsive van der Waals interactions
are also much higher than for the Kolpack, Weih, and Blackwell model, sug-
gesting the Sarko models to be energetically less favorable.

The chain shift discrepancy appears to be due to: 1) the inadequate pack-
ing energy term [5] in the function used by Sarko in refining his x-ray data
to define the conformations of minimum energy. This term tends to strong-
ly slant the interactions in favor of electrostatic ones and also to exaggerate
the differences obtained (in Table 2 the electrostatic minimum obtained with
our function is in the 3.0-3.5 A shift range, consistent with what is obtain-
able with Sarko’s function). Thus, it describes only one type of nonbonded
interaction, the weakest one, and by a mathematical expression which does
not represent it correctly. The other terms, by minimizing indirectly the
energy of the system through geometrical parameters only, imply a rigid-
spheres approach which has been shown to be inadequate to describe the
reality of complex molecular structures. 2) The model’s deficiency that only
two chains of two glucoses each were used by Sarko in his refinement. Thus,
when the two chains are progressively shifted in relation to each other along
the crystallographic ¢-axis by 3 A or more, the total energy will continue to
decrease because fewer and lower interchains interactions are present. This
is obviously not the case if the much longer chains of cellulose would have
been used. Two chains also do not clarify the jigsaw puzzle situation present
in a crystal.

For these reasons, doubts may be expressed as to the validity of alt the
multitude of crystalline cellulose II and cellulose I models calculated by
Sarko [5, 6] by this method.

The values of interchain interactions in the structure obtained from the
Kolpak, Weih, and Blackwell model for 5 chains of 4 glucoses each (4-4
structure) are shown in Table 4; those for 5 chains, the corner chains being
composed of two glucoses and the central one of three glucoses (2-3 structure),
are shown in Table 5. While the 2-3 structure (Table 5) which is the most
common pictorial representation of the crystal [4-6] shows attractive total
interactions for both the whole crystal and between each chain pair, this is
not the case for the 4-4 structure (Table 4). For the latter, the total crystal
energy shows the whole crystal to be stable and its formation favorable
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TABLE 4. Interchain Energies of Cellulose I1 Crys’callitea’b

Chains van der Waals H-bond Electrostatic Total
1.2 -6.45 -9.47 1.41 -14.51
1-3 -1.42 -0.04 0.05 -1.40
1-4 -0.80 0 0.12 -0.67
1-5 -10.96 -4.48 0.69 ~-14.75
2-3 -0.05 0 0.06 0.00
2-4 -1.33 0 0.12 -1.22
2-5 0.35 -17.97 1.44 ~-16.18
3-4 -3.78 -10.93 0.80 -13.91
3.5 2594 ~-13.16 2.94 +15.72
4-5 -20.35 -5.14 1.16 -24.33
Total -18.85 -61.19 8.79 -71.25

31 kcal/mol.
bs Chains, 4 glucoses each. Kolpak, Weih, and Blackwell model.

(-71.25 kcal/mol) but the energy value between chains 3 and 5 shows a repul-
sive interaction (+15.72 kcal/mol). While this does not destabilize the crystal,
as the total energy balance is favorable, it is an unexpected finding (the effect
cannot be eliminated by any of the manipulations tried). This may be an
indication of 1) the Kolpak, Weih, and Blackwell model being partially incor-
rect although all the other evidence indicates that this is not the case, and 2)
the side groups of the D3 glucose residues (the repulsive interaction is D3-DS,
Fig. 3) being in the conformation of an end-of-crystal glucose residue and not
as in the body of the crystal (correction of this point minimizes but does not
completely eliminate the problem).

Figures 1, 2, and 3 show the structure of chains 1 and 2 (Fig. 1) and 3 and
4 (Fig. 2) and 2, 3, and 5 (Fig, 3) at the conformation of minimum total energy
of the whole crystal with the interchains H-bond network for the refined Kol-
pak, Weih, and Blackwell model. In this regard, comparison of Figs. 1 and 2
shows that the 040—H49 and 0214-H223 H-bonds are slightly different, both
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TABLE 5. Interchain Energies of Cellulose I Crystallitea’b

Chains van der Waals H-Bond Electrostatic Total
1-2 -3.86 -3.29 0.77 -6.39
1-3 -0.49 0 0.02 -0.47
1-4 -0.33 0 0.02 -0.30
1-5 -10.09 -0.71 0.26 -10.53
2-3 -0.02 0 0.01 -0.01
2-4 -0.50 0 0.01 0.49
2.5 2.70 -8.50 1.05 -4.75
3-4 -3.00 -8.49 0.65 -10.87
35 -1.01 -7.87 1.42 -7.46
4-5 -11.20 -2.23 1.03 -12.40
Total -27.79 -31.09 5.23 -53.65

31n kcal/mol.
b5 Chains. Corner chains 2 glucoses each; central chain 3 glucoses; Kolpak,
Weih, and Blackwell model.

within the x-ray data previsions, and have slightly different values (Table 3).
This difference and the differences of the atoms positions for the glucose rings
A1-A4 and D1-D4 indicate that the cases shown in Figs. 1 and 2 represent only
the conformation of surface chains top and bottom of the crystal of cellulose
IT; and the A1, A2, A3, A4, AS and D1, D2, D3, D4 the conformation of the
glucose rings at the upper and lower end of the crystal or before start of the
amorphous zone [3]. The conformations of the B1, B2, B3, B4, BS, C1, C2,
C3, C4, C5, and possibly of D5 glucose rings are consistent with the conforma-
tions of the glucose residues along the whole length of the top and bottom
surfaces and of the inner part of a cellulose II crystallite of any length and are
consistent with the x-ray data of Kolpak, Weih, and Blackwell [4].

The conformation of the external side groups of the corner chains have
been found to be identical to that of cellulose I. Figure 4 shows a different
conformation of the 0410/H411 group. Itis different because these figures
represent the 2-3 structure and the B3 and B5 glucose rings are in this the
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FIG. 1. Top surface chains (Chains 1 and 2) in a five-chains cellulose II crys-
tallite when chains are limited to four glucose residues each. Positions of H-bonds
are indicated by broken lines, the heavier lines representing H-bonds stronger than
-1 kcal/mol. H-bonds and group configurations of Bl, B2, C1, and C2 residues
are representative of H-bond pattern in the body of long chains, Al, A2, D1, and
D2 residues configurations are indicative of upper and lower ends of cellulose II
crystallite. Refinement of Kolpak, Weih, Blackwell model [4].
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FIG. 2. Bottom surface chains (Chains 3 and 4) in a five-chains cellulose II crys-
tallite when chains are limited to four glucose residues each. Positions of H-bonds
are indicated by oroken lines, the heavier lines representing H-bonds stronger than
-1 kcal/mol. H-bonds and group configurations of B3, B4, C3, and C4 residues are
representative of H-bond pattern in the body of long chains, A3, A4, D3, and D4
residues configurations are indicative of upper and lower ends of cellulose I crys-
tallite. Refinement of Kolpak, Weih, Blackweill model [4]. Note that 0214/H223
configuration is slightly different from 040/H49 in Fig. 1.



18: 23 24 January 2011

Downl oaded At:

916

PIZZI AND EATON




18: 23 24 January 2011

Downl oaded At:

STRUCTURE OF CELLULOSE. 4 917

FIG. 4. Detail of B3 and BS5 showing O410/H411 difference in configuration
for five-chains cellulose IT crystallite model with corner chain (B3) and center
chain (B5) composed respectively of only 2 and 3 glucose residues

FIG. 3. Chains 2, 3, and 5 (central, antiparallel) in a five-chains cellulose
I crystallite when chains are limited to four glucose residues each. Positions
of H-bonds are indicated by broken lines, the heavier lines representing H-bonds
stronger than ~1.0 kcal/mol. H-bonds and group configurations of B2, B3, B3,
C2, C3, CS5, and D5 residues are representative of H-bond pattern in the body
of long chains. A2, A3, A5, D2, and D3 residues configurations are indicative
of upper and lower ends of cellulose II crystallite. Intrachain H-bonds for
Chains 2 and 3 are not shown (cf. Figs. 1 and 2) but are shown for Chain 5.
Refinement of Kolpak, Weih, Blackwell model [4].
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upper terminal residues of the crystal and the 0410/H411 group maximizes
the H-bond by turning inwards. Table 3 details the position and values of all
the H-bonds stronger than -0.1 kcal/mol in the crystal.

In conclusion, the Kolpak, Weih, and Blackwell model appears to be the
one currently describing the structure of the body of the cellulose II crystal-
lite and the most probable of the best models available once all the possible
interactions are computed by conformational analysis. The minimum total
energy of -71.25 kcal/mol is consistent with the accepted evidence that crystal-
line cellulose II is a structure more stable than crystalline cellulose I (-46.72
kcal/mol) [3].
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